GARR TOOL General Purpose Milling Guide

	ISO Material	HRC	SFM (Vc)	CHIPLOAD PER TOOTH (Fz)									
				1/16"	1/8"	3/16"	1/4"	5/16"	3/8"	1/2"	5/8"	3/4"	$1 "$
S	COBALT BASE ALLOYS												
	Powdered Metal, Stellite, Hs-21, Haynes 25/188, X-40, L-605	$\begin{aligned} & <40 \\ & >40 \end{aligned}$	$\begin{aligned} & 60-90 \\ & 50-80 \end{aligned}$	$\begin{array}{\|l\|} \hline .0004^{\prime \prime}-.0008^{\prime \prime} \\ .0003^{\prime \prime} \end{array}$	$\begin{aligned} & .0004^{" .0008 " ~} \\ & .0003^{\prime \prime} .0006^{\prime \prime} \end{aligned}$	$\begin{aligned} & .0004^{\prime \prime}-.0008^{\prime \prime} \\ & .0003^{\prime \prime} .0006^{\prime \prime} \end{aligned}$	$\begin{aligned} & .0005^{" ~}-.0010^{\prime \prime} \\ & .003^{\prime} .0008^{\prime \prime} \end{aligned}$	$\begin{aligned} & .0008^{" .0015 " ~ " ~ " 0010 " ~} \\ & .0005 \end{aligned}$	$\begin{aligned} & .00100^{"-0018 " ~} \\ & .0008^{\prime \prime}-0015^{\prime \prime} \end{aligned}$			$\begin{aligned} & .0025 "-.0035^{\prime \prime} \\ & .00155^{\prime \prime}-.00200^{\prime \prime} \end{aligned}$	$\begin{aligned} & .0025^{"-.0035 " ~} \\ & .0015^{\prime \prime}-.0020^{\prime \prime} \end{aligned}$
	NICKEL BASE ALLOYS												
	Invar, Kovar, Inconel-625/718, Waspaloy, Rene, Hastelloy, A286	$\begin{aligned} & <40 \\ & >40 \end{aligned}$	$\begin{array}{r} 55-90 \\ 45-80 \end{array}$	$\begin{array}{\|l\|l\|} \hline .0004 "^{\prime \prime}-.0008^{\prime \prime} \\ .0003^{\prime \prime}-.006 \end{array}$	$\begin{aligned} & .0004^{\prime \prime}-.0008^{\prime \prime} \\ & .0003^{\prime \prime} .0006^{\prime \prime} \end{aligned}$	$\begin{aligned} & .0004^{\prime \prime}-.0008^{\prime \prime} \\ & .0003^{\prime \prime} .0006^{\prime \prime} \end{aligned}$	$\begin{aligned} & .0005^{"-.0010 " 1} \\ & .0003^{\prime \prime} .00088^{\prime \prime} \end{aligned}$	$\begin{aligned} & .0008^{\prime \prime} .0015^{\prime \prime} \\ & .0005^{-} .0010^{\prime \prime} \end{aligned}$	"0010"0.0018" ".0008" .	$\begin{array}{\|l\|l\|} \hline .0015 "-.0030 " 10 \\ .0010^{\prime \prime}-.0015 " \\ \hline \end{array}$	$\begin{aligned} & .00200^{\prime \prime}-.0030 " \\ & .00155^{\prime \prime}-.0025^{\prime \prime} \end{aligned}$	$\begin{aligned} & .0025 "-.0035^{\prime \prime} \\ & .00155^{\prime \prime}-.00200^{\prime \prime} \end{aligned}$	$\begin{aligned} & .0025^{\prime \prime}-.0035^{\prime \prime} \\ & .0015^{\prime-} .0020^{\prime \prime} \end{aligned}$
	IRON BASE ALLOYS												
	Incoloy 800-802, Multimet N-155, Timkin 16-25-6, Carpenter 22-b3	$\begin{aligned} & <40 \\ & >40 \end{aligned}$	$\begin{aligned} & 55-90 \\ & 50-80 \end{aligned}$	$\begin{array}{\|l\|} \hline .0004^{\prime \prime}-.0008^{\prime \prime} \\ .0006^{\prime \prime} \end{array}$	$\begin{aligned} & .0004^{" .0008 " ~ " ~} 0.0006^{\prime \prime} \\ & \hline \end{aligned}$	$\begin{aligned} & .0004^{\prime \prime} .0008^{\prime \prime} \\ & .0003^{\prime \prime} .0006^{\prime \prime} \end{aligned}$	$\begin{aligned} & .0005^{"-.0010 " ~} \\ & .0003^{\prime \prime} .00088^{\prime \prime} \end{aligned}$	$\begin{aligned} & .0008^{\prime \prime} .0015^{\prime \prime} \\ & .0005^{-0} .0010^{\prime \prime} \end{aligned}$.0010" ".00018" ".0008"	$\begin{array}{\|l\|l\|} \hline .0015^{\prime \prime}-.0030^{\prime \prime} \\ .00015^{\prime \prime} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline .00200^{\prime \prime}-.0030 " 1 \\ .0015^{\prime \prime}-.0025^{\prime \prime} \\ \hline \end{array}$	$\begin{aligned} & .0025 "-.0035^{\prime \prime} \\ & .00155^{\prime \prime}-.00200^{\prime \prime} \end{aligned}$	$\begin{aligned} & .0025^{\prime \prime}-.0035^{\prime \prime} \\ & .0015^{\prime-} .0020^{\prime \prime} \end{aligned}$
	MONEL												
	Monel - 65\% Nickel		50-80	.0003"-.0008"	.0003"-.0008"	.0005"-.0012"	.0005"-.0012"	.0008" - 00015 "	.0010"-.0015"	.0013"-.0020"	.0018"-.0025"	.0020"-.0030"	.0025"-.0035"
	TITANIUM ALLOYS												
	Commercially Pure, 6Al-4V, Astm 1/2/3,6Al-25N-4Zr-2Mo-Si		100-150	.0003" -.0008"	.0003"-.0008"	.0005"-.0012"	.0005" -.0012"	.0008" - 0015"	.0010" - .0015"	.0013" -.0020"	.0018" - .0025"	.0020" - .033"	.0025" - .0035"
	5553/Beta Titanium		90-120	.0003"-.0008"	.0003"-.0008"	.0004"-.0010"	.0004"- $00010^{\prime \prime}$.0005"-.0012"	.0008" - .0014"	.0010"-.0016"	.0010" - .0020"	.0015"-.0025"	.0015"-.0025"
M	STAINLESS STEELS												
	13/8, 15/5, 17-4, pHTypes	$\begin{aligned} & <40 \\ & >40 \end{aligned}$	$\begin{array}{\|c\|} \hline 150-150 \\ 80-100 \end{array}$.0002" -.0005" ".0004"	$\begin{aligned} & .0003^{"-.0006 " ~} \\ & .0002^{-}-.0004^{\prime \prime} \end{aligned}$	$\begin{aligned} & .0003^{"-}-0007^{\prime \prime} \\ & 0007)^{-0}-0066^{\prime \prime} \end{aligned}$	$\begin{aligned} & .0006^{\prime \prime} .0009^{\prime \prime} \\ & .0003^{\prime \prime}-.0007^{\prime \prime} \end{aligned}$	$\begin{aligned} & .0008^{" .0012^{\prime \prime}} \\ & .00044^{-0008^{\prime \prime}} \end{aligned}$	"0013" "00018" ".0012"	$\begin{aligned} & .001010-.0020 " 1 \\ & .00088^{\prime \prime}-.00155^{\prime \prime} \end{aligned}$	$\begin{aligned} & .00122^{"-.0025 " ~} \\ & .00100^{\prime \prime}-.00166^{\prime \prime} \end{aligned}$		$\text { .002001" -0028" } 0.0020$
	200 Series, 300 Series	$\begin{aligned} & <40 \\ & >40 \end{aligned}$	$\begin{aligned} & 150-225 \\ & 125-720 \end{aligned}$.0002" -.0005" ".0004"	$\begin{aligned} & .00022^{" .0006 " ~} \\ & .0003^{\prime \prime}-.0005^{\prime \prime} \end{aligned}$	$\text { .0005"-.0008" } .0000^{\prime \prime} \text { ".0007" }$.0008" ".0015"	$\begin{aligned} & .0010 "-.0018^{\prime \prime} \\ & .00088^{\prime \prime}-.0012^{\prime \prime} \end{aligned}$.0010"-.0018" ".0009"	$\begin{aligned} & .0015 "-.0025^{\prime \prime} \\ & .0013^{\prime \prime}-.0018^{\prime \prime} \end{aligned}$.0018" -.0028"	$\begin{aligned} & .0022 "-.0032 " 1 " \\ & .00177^{\prime \prime} .00255^{\prime \prime} \end{aligned}$	$\text { .0025" -.0040" } .0022^{\prime \prime} \text { " } 0032$
	304L, 316L, Nitronic 50	$\begin{aligned} <40 \\ >40 \end{aligned}$	$\begin{aligned} & 100-150 \\ & 80-150 \end{aligned}$	$\begin{aligned} & .0003^{" ~}-.0006^{\prime \prime} \\ & .0002^{\prime \prime} .00044^{\prime \prime} \end{aligned}$	$\begin{aligned} & .0003 "-.0007 " \\ & .00022^{-0}-.0055^{\prime \prime} \end{aligned}$	$\text { .0005" -.0010" } .0000^{\prime \prime} \text { ".0007 }$	"0008" ".0015" ".0010"	$\begin{aligned} & .0009 "-.0013^{" ~} \\ & .00055^{-0010}{ }^{\prime \prime} \end{aligned}$	$\text { "0010" ".0018" } 0.0010$	$\begin{aligned} & .0015 "-.0020 " \\ & .00099^{"-.0015 "} \end{aligned}$	$\begin{aligned} & .0018^{\prime \prime}-.0022^{\prime \prime} \\ & .0012^{\prime \prime} .0018^{\prime \prime} \end{aligned}$	$\begin{aligned} & .0018 "^{\prime \prime}-.0035^{\prime \prime} \\ & \hline .00155^{\prime \prime}-.00 \end{aligned}$	$.0022^{4} .0036^{\prime \prime} .0000000$
	400 Series	$\begin{aligned} & <40 \\ & >40 \end{aligned}$	$\begin{aligned} & 150-200 \\ & 100-150 \end{aligned}$.0005"-.0008" ".0007"		.0009" "00015" ".0010"	"0009" ".0014" ".0011"	$\text { "0011" -0015" } 0.0008 "^{\prime \prime} .$		$\begin{aligned} & .0015^{\prime \prime}-.0025^{\prime \prime} \\ & .0012^{\prime \prime}-.0020^{\prime \prime} \end{aligned}$	$\begin{aligned} & .00200^{\prime \prime} .0035^{" 1} \\ & .0018^{\prime \prime}-.0030^{\prime \prime} \end{aligned}$	"0022" -0040"	.0030" -.0046"
P	HIGH STRENGTH TOOL STEELS												
	A2, D2, P20, H13, S7, 01	$\begin{aligned} & <40 \\ & >40 \end{aligned}$	$\begin{aligned} & 150-200 \\ & 100-150 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline .0003^{\prime \prime}-.0008^{\prime \prime} \\ .0003^{\prime \prime} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline .0003^{\prime \prime}-.0008^{\prime \prime} \\ .0003^{\prime \prime}-.0005^{\prime \prime} \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline .0005 "^{\prime \prime}-.001010 " \\ .0003^{\prime \prime}-.0000^{\prime \prime} \\ \hline \end{array}$	$\begin{aligned} & .0010^{\prime \prime} .0015^{\prime \prime} \\ & .005^{\prime \prime} .0010^{\prime \prime} \end{aligned}$	$\begin{aligned} & .0012^{" ~}-0020^{\prime \prime} \\ & .00055^{-0010 " ~} . \end{aligned}$	$\begin{array}{\|l\|} \hline .0012^{\prime \prime}-.0020^{\prime \prime} \\ .00055^{\prime \prime} .0010^{\prime} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline .0014^{\prime \prime}-.0024^{\prime \prime} \\ .00015^{\prime \prime} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline .0018^{\prime \prime}-0026^{\prime \prime \prime} \\ .0012^{\prime \prime} .0018^{\prime \prime} \\ \hline \end{array}$	$\begin{aligned} & .00200^{\prime \prime} .0028^{\prime \prime} \\ & .0014^{\prime \prime}-.0020^{\prime \prime} \end{aligned}$	$\begin{array}{\|l\|} \hline .0022^{\prime \prime}-.0030^{\prime \prime} \\ .0015^{\prime \prime}-.0022^{\prime \prime} \\ \hline \end{array}$
	MEDIUM ALLOY TOOL STEELS												
	4140, 4340, 52100, 6150,8620	$\begin{aligned} & <40 \\ & >40 \end{aligned}$	$\begin{aligned} & 150-200 \\ & 100-150 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline .0003^{\prime \prime}-.0008^{\prime \prime} \\ .0003^{\prime \prime}-.005^{\prime \prime} \end{array}$	$\begin{array}{\|l\|} \hline .0003^{\prime \prime}-0008^{\prime \prime} \\ .0003^{\prime \prime} \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline .0005 "^{\prime \prime}-.0010^{\prime \prime} \\ .0003^{\prime}-.0008^{\prime \prime} \\ \hline \end{array}$	$\begin{aligned} & .0010^{\prime \prime} .0015^{\prime \prime} \\ & .005^{\prime \prime} .0010^{\prime \prime} \end{aligned}$	$\begin{aligned} & .0012^{\prime \prime} .0020^{\prime \prime} \\ & .0005^{\prime}-0010^{\prime \prime} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline .0012^{\prime \prime}-.0020^{\prime \prime} \\ .00055^{\prime 0} .010^{\prime \prime} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline .0014^{\prime \prime}-.0024^{\prime \prime} \\ .0010^{\prime \prime} .0015^{\prime \prime} \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline .0018^{\prime \prime}-.0026^{\prime \prime} \\ .0012^{\prime \prime} .0018^{\prime \prime} \\ \hline \end{array}$	$\begin{aligned} & .0020^{\prime \prime}-.0028^{\prime \prime} \\ & .0014^{\prime \prime}-.0020^{\prime \prime} \end{aligned}$	$\begin{aligned} & .0022^{\prime \prime}-.0030^{\prime \prime} \\ & .0015^{\prime-}-.0022^{\prime \prime} \end{aligned}$
	CARBON STEELS												
	1000's - 1018, 1020, 12 L14	$\begin{aligned} & <40 \\ & >40 \end{aligned}$	$\begin{aligned} & 150-200 \\ & 100-150 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline .0003^{\prime \prime}-.0008^{\prime \prime} \\ .0003^{\prime \prime}-.0005^{\prime \prime} \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline .0003 "-.000 "^{\prime \prime} \\ .0003^{\prime \prime}-.0005 "^{\prime \prime} \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline .0005 "-.0010 " 10 \\ .0003^{\prime \prime}-.0008^{\prime \prime} \\ \hline \end{array}$	$\begin{aligned} & .0010^{\prime \prime}-0015^{\prime \prime} \\ & .0005^{\prime-.0010^{\prime \prime}} \end{aligned}$	$\begin{aligned} & .0012^{\prime \prime} \text { ".0020" } \\ & .00055^{-0010 " ~} .01 \end{aligned}$	$\begin{array}{\|l\|} \hline .0012^{\prime \prime}-.0020^{\prime \prime} \\ .00055^{\prime \prime} .0010^{\prime \prime} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline .0014^{\prime \prime}-.0024^{\prime \prime} \\ .0010^{\prime \prime}-.015^{\prime \prime} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline .0018^{\prime \prime}-0026^{\prime \prime} \\ .0012^{\prime \prime}-.0018^{\prime \prime} \\ \hline \end{array}$	$\begin{aligned} & .00200^{\prime \prime}-.0028^{\prime \prime} \\ & .0014^{\prime \prime}-.0020^{\prime \prime} \end{aligned}$	$\begin{array}{\|l\|} \hline .0022^{\prime \prime}-.0030^{\prime \prime} \\ .0015^{\prime \prime}-.0022^{\prime \prime} \\ \hline \end{array}$
	CAST STEELS												
	Steel		125-175	.0003"-.0008"	.0003"-.0008"	.0005"-.0010"	.0010" - .0018"	.0010" - 0018"	.0012"-.0020"	.0015" -.0025"	.0024" -.0032"	.0026"-.0034"	.0030"-.0040"
K	CAST MATERIAL												
	Ductile Iron		175-225	.0005"-.0008"	.0008" - .0012"	.0010"-.0015"	.0015" -.0025"	.0015" - .0025"	.0020" - .0030"	.0025" -.0035"	.0035" -.0045"	.0035"-.0045"	.0045"-.005" ${ }^{\prime \prime}$
	Gray Iron		175-225	.0005" - .0008"	.0008"-.0012"	.0010"-.0015"	.0015"-.0025"	.0015"-.0025"	.0020"-.0030"	.0025"-.0035"	.0035" - .0045"	.0035"-.0045"	.0045"-.005"
N	NON-FERROUS												
	Aluminum		300-500	.0003" - .0005"	.0006"-.0010"	.0008" - 0014	.0012"-.0020"	.0014"-.0028"	.0020" - .0030"	.0035"-.0048"	.0050"-.0060"	.0058" - .0070"	.0068 " - 0090"
	Magnesium		300-500	.0003" - .0005"	.0006" - $0010^{\prime \prime}$.0008" - 0014	.0012"-0020"	.0014"-.0028"	.0020" - 00301	.0035"-.0048"	.0050" - .0060"	.0058" -0070"	.0068" - .0090"
	Copper		250-450	.0003" -.0005"	.0006" - 0010 "	.0008"-.0014"	.0012" - .0020"	.0014" -0028"	.0020" - .0030"	.0035" -.0048	.0050" - .0060"	.0058"-0070"	.0068 " - 0090"
	Brass, Bronze		200-400	.0003" -.0005"	.0006" -.0010"	.0008"-.0014"	.0012" - .0020"	.0014" -0028"	.0020" - .0030"	.0035" . 0048	.0050" - .0060"	.0058" - 0070"	.0068" - 0090"
0	COMPOSITE (non-ISO)												
	Fiberglass, Plastics		200-400	.0003" -.0005"	.0006" - .0010"	.0008" -.0014"	.0012"-.0020"	.0014" - 0028"	.0020"-.0030"	.0035"-.0048"	.0050" - .0060"	.0058" - 0070"	.0068" - .0090"
	Graphite, G10	(See Graphite Chart - page 311)											

When plunging into a solid, drop feed by approximately $50 \% .20 \%$ of diameter for basic engagement parameters.
NOTE - ABOVE ARE STARTING PARAMETERS ONLY. HIGHER RESULTS MAY BE ACHIEVED WITH OPTIMUM CONDITIONS.

