GARRTOOL High Performance Milling Guide for V4

NOTE - DATA DOES NOT REFLECT CHIP THINNING.
SPINDLE INTERFACE MUST BE SCRUTINIZED WHEN USING 5/8" DIAMETER AND LARGER END MILLS

	ISO Material	HRC	SFM (Vc)	CHIPLOAD PER TOOTH (Fz)						
				1/4"	5/16"	3/8"	1/2"	5/8"	3/4"	1"
S	COBALT BASE ALLOYS									
	Haynes 25/88, Stellite 21, Cobalt chrome	<40 >40	$\begin{aligned} & 90-185 \\ & 75-150 \end{aligned}$			$.0011^{1 " .0022^{\prime \prime}}$		$\begin{aligned} & .00188^{-0} 0.036^{\prime \prime} \\ & .0014 " .003 "^{\prime \prime} \end{aligned}$	$\left\lvert\, \begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \hline .00040^{\prime 0} \end{array}\right.$	
	NICKEL BASE ALLOYS									
	Incone-625/718, Waspaloy, Invar Rene, Hastelloy, Monel	$\begin{aligned} & <40 \\ & >40 \end{aligned}$	$\begin{aligned} & 90-185 \\ & 75-150 \end{aligned}$			$.0011^{1 " .0022^{\prime \prime}}$		$\left\|\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \hline .0012^{\prime \prime} \end{array}\right\|$		
	IRON BASE ALLOYS									
	A286, Discaloy, Haynes 556, Carpenter 22, Greek Ascolloy	$\begin{aligned} & <40 \\ & >40 \\ & >40 \end{aligned}$	$\begin{aligned} & 90-185 \\ & 75-150 \end{aligned}$.ocos"				$\left\lvert\, \begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \hline .00048 \\ \hline 0.004 \end{array}\right.$	$.0032^{2} .0060^{\circ}$
	TITANIUM ALLOYS									
	Commercially Pure, $6 A 1-4 V$, Astm $1 / 23,6 A-251-4 Z-2 M O-S i$		200-37	-.0017"	.0010'.0020	.0012 ${ }^{1} .0024^{\prime \prime}$.0018 ${ }^{10} 0034^{\prime \prime}$.0202".0004"	.0024" $0.088^{\prime \prime}$.033' 0.
	5553/BetaTitanium		150-280	.0009: 0015	.0010-.0018	0012'. 0022 "	.0018-.030	.0020".0036"	0024"-004"	.0032 - .0600
M	STAINLESS STEELS									
	1318, 155, 17-4, ph7ypes	<40	225-375 $175-275$		\|ocos"			.0018 $.00030^{\prime \prime}$.0032 $0.0600^{\prime \prime}$
		<40	250-400	.0008 $00016^{\prime \prime}$.009\% -018	.0011".0022	.0066-.033 00	.0018-0036"	.0022	.0032'-0060
	Duplex, Super-Assentic	>40	175-275	.0006".0013"	.0007 -01016	.0009" -0020"	.0012".0026	.0014 -0032"	.0018".0040	.0024 -0052
	400 Series- $403,405,420,455$	-400	225-425 $175-325$.0008 $0.00106^{\prime \prime}$	(00097-.00179010	$\begin{aligned} & .0011^{-0}-0023^{\prime \prime \prime} \\ & .00021^{\prime \prime} \end{aligned}$				
HIGH STRENGTH TOOL STEELS										
P	A2, $2,2220,413,57,01$	$\begin{array}{l\|l\|} \hline \\ >40 \\ >40 \end{array}$	$\begin{aligned} & 225-400 \\ & 150-325 \end{aligned}$	$\begin{array}{\|c} .0098^{-} .0010^{\prime \prime} \\ .00060^{\prime \prime} \end{array}$		$\begin{array}{\|c\|} \hline .0013^{2} .0023^{\prime \prime} \\ .0012^{2}-020^{\prime \prime} \end{array}$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \hline 0012 \end{array} 0^{\prime 2}$		$\left[\begin{array}{l} .0022^{-0055 " 05 " ~} \\ .0024-00400^{\prime \prime} \end{array}\right.$	
	MEDIUM ALLOY TOOL STEELS									
	4140,4340,52100, (155, 8820	$\begin{array}{\|l\|l} \hline \\ >40 \\ >40 \end{array}$	$\begin{aligned} & 350-500 \\ & 250-375 \end{aligned}$				$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \hline 001 "^{\prime \prime} \end{array}$		$\left\lvert\, \begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \hline 00240^{\prime 0} \mid \end{array}\right.$	
	CARBON STEELS									
	1000's. $1018,1020,121 / 4$	<40	375-600	.0000".0018	.0011-.0021	.0013 ${ }^{1 / 0025^{\prime \prime}}$.0020".0036	.0022".0042	.0026".0050"	.0040'.0072
K	CAST MATERIAL									
	Ductiel lon		350-525	.0001".0018	.0013 -.0022	.0015-.0026"	.0020" $0.036^{\prime \prime}$.026".004"	.0330".0052"	-400-.002"
	Graylon		450-590	.0011".0020	.0014 $\cdot 0003^{\prime \prime}$.0166-0027	.0022". 00400°	.0028 $0.0046^{\prime \prime}$.0032 ${ }^{-1.0554}{ }^{4}$.0044 $.0080^{\circ}$

	Slotting Pocket Milling	Profiling Side Milling
Axial (ap)	up to $1.5 \times D$	up to $2 \times D$
Radial (ae)	$1 \times D$	$5 \%-15 \%$ of Dia.

NOTE - ABOVE ARE STARTING PARAMETERS ONLY. HIGHER RESULTS MAY BE ACHIEVED WITH OPTIMUM CONDITIONS.

